QUESTION BANK REAL ANALYSIS SEMESTER-2

- Q 1 Let a, b, c be any elements of R. Show that :
 - (i) If a > b and b > c, then a > c.
 - (ii) If a > b, then a + c > b' + c.
 - (iii) If $a \ge b$ and $c \ge 0$, then $ca \ge cb$.
- Q 2 Find all $x \in \mathbf{R}$ that satisfy the inequality:

$$|4 < |x + 2| + |x - 1| < 5.$$

- Q 3 If y > 0, show that there exists $n \in \mathbb{N}$ such that $1/2^n < y$. Justify each step by referring to an appropriate property or theorem.
- Q 4 State the Completeness Property of R. Show that if A and B are bounded subsets of R, then:

$$sup(A \cup B) = sup\{sup A, sup B\}.$$

- Q 5 Show that intersection of any arbitrary collection of closed sets in R is closed. Show, by an example, that union of infinitely many closed sets in R used not be closed.
- Q 6 Prove that a sequence in R can have at most one limit.
- Q 7 Suppose every subsequence of $X = (x_n)$ has a subsequence that converges to 0. Show that $\lim_{n \to \infty} X = 0$.
- Q 8 Show that the sequence $(a_n) = ((-1)^n)$ does not converge.
- Q 9 Let (s_n) be a sequence in R. Prove that $\lim_{n \to \infty} (s_n) = 0$ if and only if $\lim_{n \to \infty} (|s_n|) = 0$.
- Q 10 Let (s_n) be a sequence that converges. Show that if $s_n \ge a$ for all but finitely many n, then $\lim_{n \to \infty} (s_n) \ge a$.

Q 11 Let $X = (x_n)$ be a bounded increasing sequence.

Show that X is convergent and:

$$\lim (x_n) = \sup \{x_n : n \in \mathbb{N}\}$$

- Q 12 Show that $\lim_{n \to \infty} (\sqrt{n} + 7) = +\infty$.
- Q 13 Let $X = (x_n)$ be a sequence of real numbers that converges to x and suppose that $x_n \ge 0$. Show that the sequence $\left(\sqrt{x_n}\right)$ of positive square roots converges and $\lim_{n \to \infty} \left(\sqrt{x_n}\right) = \sqrt{x}$.
- Q 14 Let (s_n) and (t_n) be the following sequences that repeat in cycles of four:

$$(s_n) = (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, \dots)$$

$$(t_n) = (2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, \dots)$$

Find $\lim \inf (s_n + t_n)$ and $\lim \sup (s_n + t_n)$.

Q 15 Define a Cauchy sequence. Show that the sequence:

$$\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$$

is divergent.

- Q 16 Using squeeze theorem or otherwise, determine the limit of the sequence (n^{1/n^2}) .
- Q 17 State and prove the comparison test for series.
- Q 18 Test the convergence of :

(i)
$$\sum \frac{1}{2^n + n}$$

(ii)
$$\sum \frac{(-1)^n n!}{2^n}.$$

Q 19 Give an example of a convergent series $\sum a_n$ for which $\sum a_n^2$ diverges. Also, give an example of a divergent series $\sum a_n$ for which $\sum a_n^2$ converges. Justify your answers.

- Q 20 State and prove the Alternating Series Theorem.
- Q 21 Test the convergence of :

(i)
$$\sum_{n=4}^{\infty} \frac{1}{n(\log n) (\log \log n)}$$

(ii)
$$\sum \frac{(-1)^n}{n}.$$

- Q 22 Show that if $\sum a_n$ converges, then $\lim a_n = 0$. Show, by an example, that the converse is not true.
- Q 23 Let $x_1 > 1$ and $x_{n+1} = 2 \frac{1}{x_n}$ for $n \in \mathbb{N}$. Show that (x_n) is bounded and monotone. Find its limit.